

Terminology

Question 1

What type of operation you will perform if the words below appear in a word sum?
a) Sum of: \qquad
b) Difference: \qquad
c) Product: \qquad
d) Quotient: \qquad
e) Factor: \qquad
f) divisor: \qquad
g) Square: \qquad

Question 2

Provide a definition for the following: Also show an example to show your definition. 1 mark for definition, 1 mark for example.
a) prime number.
b) Prime factor:
c) multiple:
d) Factor:
e) coefficient:
f) Cubic number:
g) Square number:
h) Square root:
i) GCF
j) LCM
k) exponent
I) power
m) $\sqrt[3]{ }$ (Cube Root)
'n) whole number

Question 3

Explain the following properties of equations using variables and or numbers.
a) Commutative property:
b) Distributive property:
c) Associative property:

Question 4

4.1 Complete:
a) $10^{0}=$ \qquad
b) $7^{1}=$ \qquad
c) $8 \times 0=$ \qquad
d) $6 \div 0=$ \qquad
e) $0 \div 9=$ \qquad
4.2 Fill in the missing word.
a) By multiplying powers with the same base, the exponents are
\qquad .
b) When powers with the same base are divided, the exponents are
\qquad .
c) Name the order in which operations should be performed.
d) The additive identity is \qquad .
e) The multiplicative identity is \qquad .
4.3 Label the following:
(3)
a) \qquad
b) \qquad

c)

Question 5

Complete:
a.

An \qquad is an angle smaller than 90°
b.

An \qquad is an angle greater than 90° but smaller than
\qquad .
c.

An \qquad is 360°
d. \quad A Straight Angle $=$ \qquad $-$
e. \qquad is greater than 180° but smaller than 360°
f. A triangle whose two legs are equal is called a \qquad triangle.
g. A triangle of which all sides are unequal is called a \qquad triangle.
h. A triangle with all sides equal is called an \qquad triangle.
i. A triangle that has a 90° angle is called a \qquad triangle.
j. A triangle that has an angle of 100° is called an \qquad triangle.
k. Explain the difference between a ray and line segment.
I. \quad The sum of the three angles of a triangle $=$ \qquad .
$\mathrm{m} . \quad$ The sum of the 4 angles of a quadrilateral $=$ \qquad .
n. \qquad is a quadrilateral with only 1 pair of opposite sides parallel.

Question 6

Name the different parts of the circle:

Question 7

a. \quad Complete the Distance, Speed Time Triangle.
b. Give the formula from the triangle to work out speed. \qquad

$$
\text { Total = } 75
$$

Work Sheet 2
 Total $=45$
 Factors, Prime Numbers, GCD and GCF

1. List the factors for the following numbers:
a) 24 \qquad
b) 36 \qquad
c) 54 \qquad
d) 16 \qquad
2. a) Provide the first 10 prime numbers. \qquad
b) Provide the prime numbers between 50 and 100. \qquad
c) Name the smallest positive prime number.
3. 1 Write the following numbers as the product of their prime factors:
a) 42 \qquad
b) 108
3.2 Determine the GCD and LCM of the following numbers using their prime factors:
a) 72 en 108
(5)

LCM = \qquad
GCM = \qquad
b) $\quad 132$ en 180

LCM = \qquad
GCM = \qquad
c) $\quad 36$ en 42 . \qquad

LCM $=$ \qquad
GCM = \qquad
d) $\quad 160$ en 192.

LCM = \qquad
GCM = \qquad
4. If two of the factors of a number are 12 and 5 and the product is 360 which is the third factor? \qquad
5. Write $2+2+2+2+3+3+3+3+3+3$ in the simplest form without working out the sum. \qquad .
6. Provide the multiples of the following numbers as requested.
a) First 4 multiples of 14 :
b) Multiples of 7 between 40 and 80 : \qquad
c) Multiples of 12 smaller than 50 : \qquad

$$
\text { Total }=45
$$

1. a) Write $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3$ in exponential form.
b) Write $4^{3}+3^{4}$ in expanded form.
2. Label the following.
c) \rightarrow C
a)
b) \qquad
c) \qquad
3. Explain what a square number is. \qquad
\qquad
4. Calculate the following:
a) $10^{2}+1^{2}-8^{2}=$ \qquad
b) $4^{2} \div 2^{2}=$
c) $\sqrt{100}-\sqrt{36}=$ \qquad
d) $\sqrt{100-64}=$ \qquad
e) $(\sqrt{25})^{2}=$ \qquad
f) $(\sqrt[3]{7})^{3}=\square$

5 Explain the following exponent laws.
a. $\quad 2^{3} \times 2^{2}=2^{3+2}$
b. $\quad \frac{4^{3}}{4^{2}}=4^{3-2}$
6. Determine the answer of the following numbers using their prime factors.
a) $\sqrt{1024}=$ \qquad
b) $\sqrt{1296}=$
c) $\sqrt[3]{2744}=$
d) $\sqrt[3]{5832}=$
7. How many integers are there between $\sqrt{ } 8$ and $\sqrt{ } 80$?
8. Between which 2 integers will the following lie
a) $\sqrt{12}$ \qquad
b) $\sqrt{43}$ \qquad
9. Write the following answers in exponential form.
a) $\quad 4 \times 4^{1} \times 4^{3}$
(1) b) $3^{4} \times 3^{4} \times 3^{4}$
\qquad
c) $\quad 6^{3} \div 6^{2}$
(1) d) $10^{2} \div 10$
\qquad
e) $\quad 2^{5} \div 2^{3}$
(1) f) $9^{4} \times 9^{2} \times 9^{1}$
\qquad
g) 4×4
(1) h) $5^{4} \times 5^{2}$
\qquad
i) $0 \times 0 \times 0 \times 0$
(1) j) $6^{2} \div 6^{2}$
\qquad
k) 5^{0}
(1) I) $12^{7} \div 12^{5} \times 12^{4}$
10. Calculate the following.
a) $\sqrt{90-9} \div 9$
(1) b) $\sqrt[3]{5^{3}}+\sqrt[3]{1^{3}}$
\qquad
c) $\sqrt[3]{64} \times \sqrt[3]{27}$
(1) d) $\sqrt[3]{250-34}-214$
(1)
e) $(\sqrt[3]{8})^{2}+6$
(1) f) $\sqrt[3]{1000000}$
(1)
\qquad
g) $\sqrt[3]{8}+\sqrt{16}$
(1) h) $\sqrt[3]{25+2}$
\qquad
i) $\sqrt[3]{a \times a \times a}$
(1) j$) \sqrt[3]{x^{3} \times x^{6}}$
(1)
\qquad
\qquad

$$
\text { Total }=55
$$

Work Sheet 4

Total $=$
30

Integers (Positive and Negative)

1. In each case, provide the rule for the following operations with negative and positive integers.
a) When 2 negative numbers are added together:
b) When different signs (positive and negative) are added together.:
c) Subtraction of different signs (negative minus positive):
d) negative x / \div negative $=$ \qquad
e) negative x / \div positive $=$ \qquad
2. Answered by applying order of operation.
a) $3 \times(-5)+2 \times 7=$
b) $3+5 \times(-2)+7=$ \qquad
c) $3 \times(-5+2)-(-7)=$ \qquad
d) $3 \times 3-(-2) \times(-2) \times(-2)=$ \qquad
e) $\quad-7+(-3) \times(-2)=$
f) $14-(-12)=$
g) $3-7+5=$
h) $3-(-7)+(-5)=$
i) $64 \div(-8)=$
j) $10+(-28) \div(-4)$
k) $-10-14=$
I) $16+(-4) \times 4=$
m) $12 \times 0+(-5)=$
n) $-5+(-7)+3=$
o) $(4+(-6)) \times 3=$
p) $-3 \times(-3) \times(-3)=$
q) $3 \times(-3) \times(-3)=$
r) $7+12+5=$
s) $-5+(-8)-(-3)=$
t) $28 \div(-2) \times(2)=$
3. Calculate
a) $\sqrt[3]{-27}$ \qquad b) $\sqrt[2]{16}+-2^{3}=$ \qquad
c) $\quad-5^{2} \times-10^{3}=$ \qquad (2)

$$
\text { Total }=30
$$

Work Sheet 5

Total $=65$

Fractions

1. Match the correct answer from Column B with the word in Column A. Write only your choice from Column B with the question number of Column A.

Column A	Answer	Column B
1.1 Improper Fraction	1.1	A $4 \frac{5}{6}$
1.2 Proper Fraction	1.2	C $\frac{7}{9}$
1.3 Mixed Number	1.3	D $\frac{7}{12}$
1.4 Denominator	1.4	E $\frac{18}{11}$
1.5 Numerator	1.5	F $\frac{7}{2}$
1.6 Whole Number	1.6	

2. Simplify $\frac{18}{24}$. \qquad
3. Write $4 \frac{5}{9}$ as an Improper Fraction. \qquad
(1)
4. $\frac{2}{3}$ of $33=$ \qquad
5. Calculate

1. $7 \frac{13}{20}-4 \frac{2}{5}=$		6. $3 \frac{3}{5}-1 \frac{2}{9}=$	
	(3)		(3)
2. $3 \frac{3}{4}+1 \frac{2}{5}=$		7. $3 \frac{2}{3}+1 \frac{3}{9}=$	
	(3)		(3)
3. $3 \frac{3}{5} \times 4 \frac{1}{6}=$		8. $\frac{12}{21} \times \frac{35}{48}=$	
	(3)		(3)
4. $\frac{3}{4} \div \frac{3}{12}=$		9. $1 \frac{2}{16} \div 2 \frac{3}{12}=$	
	(3)		(3)

5. $\left(\frac{1}{4}+\frac{2}{3}\right) \div\left(\frac{3}{4}-\frac{1}{2}\right)=$	10. $\left(\frac{2}{3}+\frac{3}{4}\right)$ van $1 \frac{1}{17}=$	
(3)		
$\left.12 \frac{3}{4}-2 \frac{2}{3}\right) \times\left(1 \frac{1}{4}+1 \frac{1}{4}\right)=$	$\frac{8}{4} \times \frac{1}{9}=$	
	(6)	

6.. Nicola spends $\frac{1}{2}$ hour on her English homework, $\frac{2}{3}$ hours on Math homework and 1 $\frac{1}{6}$ hours on an Afrikaans essay.
a) How many minutes does she spend on Mathematics? \qquad
b) How long does it take her to write her essay?
c) How long does she do homework altogether? \qquad
(3)
7. How much is $3 \frac{4}{5}$ greater than the product of $\frac{3}{5} \times 1 \frac{3}{4}$. Show ALL your operations (5)
8. Henry goes to town and spends $\frac{5}{8}$ of his money on a new pair of 20% off sneakers. The original price of the sneakers was R675.
a) Calculate the sale price.
b) How much money did Henry have before he bought the sneakers?
c) How much money does he have left?
(1)

Decimals and Percentages

1 Write the numbers in extended notation.
a $\quad 56,493=$ \qquad
b $\quad 7,124=$ \qquad
c $\quad 0,684=$ \qquad
d $\quad 24,83=$ \qquad
e $\quad 9,16=$ \qquad
2. Study the following numbers and then answer the questions.

$$
0 ; \quad 0,75 ; \quad 3 ; \quad \frac{1}{3} ; 37 \% ; 0,173 ; \quad \frac{4}{5} ; 20 \% ; 5
$$

2.1.1 Arrange the numbers above in ascending order.
(each wrong Answer will be marked negative $1 / 2$)
\qquad
2.1.2 Write down all the integers. \qquad
2.1.3 Convert $\frac{\mathbf{1}}{\mathbf{3}}$ to a decimal. \qquad
\qquad
2.1.4 Write 20% as a Proper Fraction. Simplify your answer.
\qquad
2.1.5 Write 0.75 as a Proper Fraction. (Simplify your Answer).
2.2 Calculate and Simplify the following. Show how you go about it.
2.2.1 a) $18-3 \times 5 \div 5=$
\qquad
\qquad
b) $35 \div 5+(18-6)=$
\qquad
\qquad
\qquad
2.2.2 a) $\frac{3}{5}+30 \%-0,16=$ \qquad
b) Write your Answer in 2.2.2a as a percentage.
c) Write your Answer in 2.2.2a as a Proper Fraction.
(1)
2.3 Write only the answer in decimal form.
a) $23,45 \div 100=$ \qquad
b) $3,507 \times 1000=$ \qquad
c) $\quad \frac{1}{3} \times \frac{1}{3}=$ \qquad
d) $\frac{1}{3}+\frac{1}{3}=$ \qquad
e) $\frac{3}{10}+0,5=$ \qquad
2.4 Round the following numbers according to the table.

Number	To the closest whole number	To the closest tenth	To the closest hundredth
1,475			
19,642			

3. Calculate. Provide your answer in decimal form.
a. $0,375+\frac{5}{5}+1,5=$ \qquad
b. $\frac{4}{5}+0,16+0,75=$ \qquad
c. $0,125+\frac{1}{8}+\frac{4}{5}=$ \qquad
4. Do the following calculations. Show all your work and simplify your Answer whenever possible. All answers must be in decimal form.
$4.1345,05 \div 0,05=\mathrm{X}$
4.2
$0,25 \times 1 \frac{3}{5}=x$

(2)		

$4.3 \quad 1,543+\frac{2}{3}=b$
4.4
$2 \frac{1}{4} \times \frac{4}{8}=a$

(2)	

4.5 $2,4 \times 0,12=a$
4.6
$5,472 \div 0,8=a$
\qquad
5. Determine the percentage increase or decrease in the following cases.
\qquad b) 250 to $100=$
6. The sunglasses store has a 25% sale on sunglasses. Calculate the following.
a) If sunglasses cost R200, what is the new selling price?
(3)
\qquad
\qquad
b) How much Rand discount was given?
(2)
7. A 17 m garden hose must be cut into 4 equal parts. Calculate the length of each piece.
\qquad
\qquad
\qquad

Work Sheet 7

Total $=50$

Ratio and Rate

1 Write the ratios of red to blue beads as fractions:
a) $2: 5$
(2) b) $3: 4$

Red: \qquad Red: \qquad
Blue: \qquad Blue: \qquad
c) $3: 8$
(2) d) $5: 7$

Red: \qquad Red: \qquad
Blue: \qquad Blue: \qquad
2 Calculate the \% Boys and \% Girls in each of the following ratios.
a) $2: 4$
(2)
b) $3: 7$

Boys: \qquad Boys: \qquad
Girls: \qquad Girls: \qquad
c) $4: 5$
(2)
d) 1:3

Boys: \qquad Boys: \qquad
Girls: \qquad Girls: \qquad
3. Rewrite the relationships in the simplest form:
a) 14l:42l
(1)
b) $15 \mathrm{ml}: 25 \mathrm{ml}$
\qquad
c) $\quad 150 \mathrm{~cm}: 3 \mathrm{~m}$
(1)
d) $\frac{2}{5}: 4$
4. Mrs. Barnard gathered the following information about the learners in her class:

	Right-Handed	Left-Handed
Girls	12	3
Boys	16	4

a) Write down the ratio of right-handed Boys to right-handed girls.
b) Write down the ratio of left-handed Boys to left-handed girls. (1)
c) Write down the ratio of right-handed Boys to left-handed Boys.
d) Write down the ratio of right-handed girls to left-handed girls. (1)
e) Write down the ratio of left-handed learners to right-handed learners.
\qquad
5. a) Increase R330 by the ratio $2: 3$ \qquad
b) Decrease R90 by the ratio 3:2 \qquad
6. Calculate:
a) Cost of 1 kg of apples if 5 kg costs R52.
b) $260 \mathrm{~km} / 21 / 2$ hour $=$ \qquad km / hour
c) My heart beats 56 beats per minute $=$ \qquad beats / hour (2)
7. Last year a pancake was sold at the cake sale at R3 for a pancake. Increase the price for this year in the 6: 7 ratios.
\qquad
8. Divide R 112 in the ratio 5: 9.
\qquad
9. A concrete mix is loaded at a building site. The specifications for the foundations are 1part cement, $21 / 2$ parts river sand and 4 parts stone. If $6 \mathrm{~m}^{3}$ of the dry mixture is discharged, what are the volumes of the cement, sand and stone in the mixture respectively? \qquad
10. Calculate the rate in $\mathrm{m}^{3} / \mathrm{sec}$, if the pipe that fills a pool delivers $12 \mathrm{~m}^{3}$ of water in 10 min .
\qquad
11. Calculate the distance traveled if a car was traveling at an average speed of 120 km / hour after 7 hours 15 min .
(3)

Functions and relationships

1. Use the given formulas and then calculate the perimeter and or area of the different shapes.

Shape	Perimeter	Surface Area
Square	$4^{*} \mathrm{~S}$	$\mathbf{S}^{2}=\mathbf{a}^{2}$
Rectangle	$\mathbf{2 l + 2 b}$	$\mathbf{I} \times \mathbf{b}=\mathbf{a}^{2}$
Triangle	Sum of $\mathbf{3}$ sides	$\mathbf{1 / 2 b} \mathbf{x ~ h}=\mathbf{a}^{2}$
Circle	$2 \pi r$ $\pi=3,14$	$\pi r^{2}=\mathbf{a}^{2}$ $\pi=3,14$

a)

Perimeter: \qquad
Surface Area:

Abstract

a:

Perimeter: \qquad
Surface Area: \qquad
(2)

b)

Perimeter:
Surface Area: \qquad
d)

Perimeter: \qquad

Surface Area:
(2)

2 The linear equation is given as $y=5 x+40$.
a) Calculate y if $x=6$.
\qquad
\qquad
b) Calculate x if $y=105$.
\qquad
\qquad
c) Calculate x if $y=85$.
\qquad
\qquad
3. The following values are given:
$a=5 ; \quad b=-3$ and $\quad c=9$.
Calculate the values of the expressions:
a) $\quad a+\frac{1}{2}(c)-b$
(3) $\mathrm{b} \quad 4 c(a-b)$
c) $\frac{-4 a c}{2 b}$
(3)

Work Sheet 9
 Total $=45$
 Patterns

1. Explain:
a) What is meant when it is said that a pattern has a constant difference?
b) What is meant when a pattern is said to have a constant ratio?
\qquad (2)
2. Calculate the following two terms in each number pattern.
a) $6 ; 14 ; 22 ; 30$; \qquad
b) $1 ; 2 ; 4 ; 8 ; 16$; \qquad
c) $1 ; 2 ; 4 ; 8$;
d) $1 ; 3 ; 9 ; 27$; \qquad
3. Use the rule to find the first four terms in each number pattern.
a) Start at 3 and add 2 each time.
\qquad ; \qquad ; \qquad ; \qquad
b) Start at 1 and double every time.
\qquad ; \qquad ; \qquad ; \qquad
b) Start at 1000 and multiply by $1 / 2$ each time.
\qquad ; \qquad ; \qquad ; \qquad
4. Study the following sequences. describe the rule of each in your own words and then use the rule to determine the 10th term of that row
a) $4 ; 8 ; 12 ; 16 ; \ldots$

Rule \qquad
10th term
b) $1 ; 4 ; 9 ; 16 ; \ldots$

Rule \qquad
10th term \qquad
c) $5 ; 8 ; 11 ; 14$

Rule \qquad
10th term \qquad
5. a) Use the rule $\mathbf{m}=\mathbf{2 n}+\mathbf{3}$ to complete the following table.

\mathbf{n}	5	6	a)	b)
\mathbf{m}	c)	d)	27	39

b) Calculate the value of m if $n=201$
(1)
6. Study the following pattern and then answer the questions.

Input (a)	1	2	3	4	$\mathbf{1 2}$	$\mathbf{2 0}$	\boldsymbol{z}
output (b)	5	9	13	17	x	\boldsymbol{y}	$\mathbf{1 2 1}$

b.1) Describe the pattern in words.
\qquad
b.2) Write the rule of the pattern as an expression.
\qquad
b.3) Find the values of:
i. $\quad x=$ \qquad
ii. $\quad y=$ \qquad
iii. $\quad z=$
7. Study this dots design

a) Draw the fourth design.
b) Write down the rule you used to expand the patterns.

1) Black dots \qquad
2) Light/Red Dots:
\qquad
c) Complete the given table to compare the number of dark spots with the light spots.

Pattern	1	2	3	4	5	10
Light/ Red Dots						
Black dots						

Algebraic Expressions and Equations

1. Study the expression and answer the questions.

$2 \mathrm{a}+7$

a) \qquad is the variable.
b) \qquad is the coefficient.
c) \qquad is the constant.
2. Write the following expressions in words.
a) $2(a+b)$
\qquad
\qquad
b) $6 y-1$
\qquad
\qquad
c) $\quad 10-(y+3)$
\qquad
\qquad
3. Resolve the unknown if $a=3, b=5$ and $c=-4$:
a) $a+b \times c$
(2) b) $a-3 b$
\qquad
\qquad
c) $c^{2}-a c+12$
(2) d) $3 a+3 b-2 c$
4. Solve for x :
a) $x+9=14$
(2) b) $48=39-x$
\qquad
\qquad
\qquad
c) $\mathbf{1 3 5}=5 x+10$
(2) $d) \frac{4 x}{9}=8$
\qquad
\qquad
\qquad
e) $\frac{y}{4}+12=17$
(3) f) $x^{2}-23=-7$
\qquad
\qquad
\qquad
5. Resolve the unknown if $c=4 ; d=-5$ and $e=2$:
a) $\quad-d+\left(e^{2} \times d\right)$
(2)
b) $c-5 c+e \times d$
(3)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
C) $\quad 4 e^{2} \times e+c d-e$
(3)
d) $2 d+\frac{c}{e}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. Write the following as expressions.
a) A number is reduced by 4 to power 2 .
b) $\quad 12$ is divided by an unknown number and added to 14 .
c) Twelve less than a Number. \qquad
d) $\quad 9$ is added to the Square of a variable.
e) 7 less than the sum of 2 unknown numbers.
7. Determine the value of the following expressions:
a) $4 m n o-2 m n+o$, as $m=5, n=8$ en $o=2$.
\qquad
\qquad
\qquad
b) $\quad 3(a-c)-4(2 a+b-4 c)$, as $a=2, b=7$ en $c=3$.
\qquad
\qquad
\qquad

Graphs

Line graphs consist of an X and Y axis

1. The y-axis is the \qquad line.
2. The x-axis is the \qquad line.
3. The variable shown on the y-axis is known as the \qquad variable.
(1)
4. The variable shown on the x-axis is known as the \qquad variable.
5. Linear graphs are a) \qquad graphs where the relationship between the dependent and independent variable is a b) constant / different increase or decrease.
(2)
6.

Linear Graph that a)
\qquad in value
\qquad
in
value
7. A constant value graph is indicated by an a) \qquad running b) \qquad to the x-axis.
(2)
8. Water drips into three containers, A, B and C, at a constant rate. The containers are shown below. Draw a graph to show how the water level in the containers will differ over time.
(6)

B

C

a)
b)

9. The distance (km) traveled by a car is calculated by the following formula:

Distance $(\mathrm{D})=$ Speed $(\mathrm{S}) \times$ Time (T)
Time is measured in hours.

Speed (S):	60	60
Time (T):	2	3
Distance (D):	120	180

(a) Present the information on a graph.

(b) Is the car's speed constant? Motivate your answer.
\qquad
\qquad
(c) In which unit is the speed measured?
(d) Use your graph and answer the following questions. Indicate on the graph where you made the readings.
(i) What distance will be covered after 6 hours? \qquad
(ii) How long will it take the car to cover 330 km ?
10. After a difficult training session, Petru ran herself a nice full bath. While the water was running in, she brushed her teeth so she could get in bed straight after.

This graph shows how the level of water in the bath changes.
Take a close look at the graph and describe what you think happened using the different Alphabet letters.

Begin tot A \qquad
A-B

B-C
C-D
D-E
11. a) Draw a graph to illustrate the following events:

During a rainstorm, Riëtte put a measuring cup outside to measure how much it was raining. After 10 minutes of heavy rain, there was 200 ml in the cup. It started to rain softer, and after another 20 minutes there was 250 ml in the cup. When Riëtte went to look 20 minutes later there was 280 ml in the measuring cup. 30 minutes later she went to look again, but there was no change. (5)

b) Is it a linear or a non-linear graph?

Work Sheet 12
 Total $=$
 60

Geometry

1. Complete the following by writing down the missing words:
a) An angle of 215° is called a \qquad angle.
b) The sum of the interior angles of a Triangle is equal to \qquad .
c) A triangle whose one angle is 90° is called a \qquad .
d) A triangle whose two sides are the same length is called an \qquad triangle.
e) A quadrilateral of which all sides are equal, but the angles are not equal is called a
\qquad .
2. Measure and label the following angles:
a) \qquad
b) \qquad
c) \qquad

3. Draw:
a) Draw line segment $A B 30$ mm long.
b) Draw KL \| OP.
c) Use your compass and ruler and construct $\mathrm{PQ} \perp \mathrm{AB}$
4. Give the name of each angle as well as a description in degrees.

Angle	Name of Angle	Degrees
	a)...................................	b)........................
	c)..................................	d)
	e)	f).
\rightarrow	g)..................................	g)........................
	i)....................................	h)........................

5. Use your compass and ruler to draw an equilateral triangle with lengths of 7cm. (2)
6. What shape properties are described here?
(Square, Rectangle, Parallelogram or Kite)
a) Four angles of 90° each.

Two pairs of opposite sides are equally long and parallel.
\qquad
b) Two pairs of opposite angles are equal. The angles are not 90°.

Two pairs of opposite sides are equally long and parallel.
7. The Triangle below is not drawn to scale. Calculate the size of angle c .
\qquad

(1)
8. The quadrilateral below is not drawn to scale. Calculate the magnitude of angle e.

9. a) Name the 3-D Shape.
\qquad

b) Calculate the volume of the Shape.
\qquad
c) Determine the outer surface area of the Shape.
\qquad
\qquad
\qquad
10. Study the following figure of the school yard and then answer the questions that follow.

a) Calculate the Surface Area of the school grounds.
(3)
b) Calculate the Perimeter of the school grounds. \qquad
(2)
11. Name the following figures:

A: \qquad
B: \qquad
C: \qquad
D: \qquad

E: \qquad
12. Which 3D shapes can be folded from the following template?
(2)
a)

b)

13. Complete the table on the given shapes

13.1.	Name	Total Faces	Total Corners	Total Edges
	a.	b.	c.	d.

14. Draw a Circle with a diameter of 5 cm and indicate the following..
a) Diameter
b) radius
c) Cord
d) Circumference
15. Calculate the Perimeter of the Circle in Question 14 \qquad
(2)
16. Calculate the area of the Circle in Question 14.
(3)

Compiled by Marié Nell

Work Sheet 13

Total $=60$

Data Handling

1. The following is a presentation of Pieter's Mathematics results (\%) for the year.
67; 45; 65; 69; 56; 65; 76; 65; 70; 54; 65; 67; 70; 72; 75;
a) Organize the data using a stem and leaf graph.
b) What is the highest\% he has achieved?
c) What is the lowest\% he has achieved? \qquad
d) Name and explain the median of the data?
e) Name and explain the mode of the data? \qquad
f) What is the average of the data? (You may use your calculator) (2)
\qquad
\qquad
g) Calculate and explain the scope / distribution of the data? \qquad
2. Jasper made the following survey about the color of the children in his grade's eyes.
a) Complete the table.

Eye Color	Frequency	Total
BLUE	HHH HH HH III	
GREEN	HHHHHHHHH II	
BROWN	HH HH HHHHH HH II	
GREY	HH HHH HH HH III	
	Total	

b) What fraction of the class has brown eyes? (Simplify)
c) Represent the information on a bar graph,

3. Aneske and Heleen had to do research to find out which fast food restaurants in town are most popular with the learners.

Voltooi die tabel hieronder
Favorite restaurant with learners from Vorentoe Primary School

Restaurant	Boys			Girls		
		Fraction of Total	${ }^{\circ}$ sector on pie chart		Fraction of Total	${ }^{\circ}$ sector on pie chart
Steers	18			27		
McDonalds	42			18		
Kentucky	30			18		
Wimpy	24			18		
Spur	6			9		
Total			360°			360°

b. Use a compass and protractor to draw a pie chart for the Boys

Terminology

Question 1

What type of operation would you perform if the words below appear in a word sum?
a) Sum of: ADD \qquad
b) Difference: SUBTRACT \qquad
c) Product: MULTIPLY \qquad
d) Quotient: DIVIDE \qquad
e) Factor: MULTIPLY OR DIVIDE (DEPENDS ON THE INFORMATION) \qquad
f) divisor: DIVISIOR \qquad
g) Square: MULTIPLY_

Question 2

Provide a definition for the following: Also show an example to show your definition. 1 mark for definition, 1 mark for example.
a) prime number \quad A number that has only 2 factors. 1 and himself e.g. 3
b) Prime factor: (2 and 3 are prime factors of 6)
c) multiple: $\quad 12$ can be divided by $3 \vee 3=\{3 ; 6 ; 9 ; 12 ; 15 ; 18 ; \ldots\}$

A number is a factor of another number if it is divisible into it: 3 is a
d) Factor: factor of 12 because I can make a multiplication of 3 to get to 12 .

e) | Coefficient: | The number in front of a variable. E.g. 2a 2 is the coefficient |
| :--- | :--- |
| | When a number is multiplied by itself 3 times, the answer is a power of |

f) Cubic number: 3 E.g. $3 \times 3 \times 3=2727=$ power of 3

When a number is multiplied by itself, the answer is a square number 4
g) Square number: $\times 4=1616$ is a square number

The number that must be multiplied by itself to produce a square
h) Square root: number E.g. 4 is the square root of 16 because $4 \times 4=16$

i)	GCF	When looking at 2 or more numbers, the GCF is the largest divider that can be divided into both without a remainder. GCF of 24 and 36 is 12
j)	LCM	When looking at 2 or more numbers, the LCM is the smallest number in which both are divisible LCM of 4 and 6 is 12
k)	exponent	The number indicating how many times a base has to be multiplied by itself E.g. $5^{2} 2$ is the exponent
I)	power	A base and its exponent e.g. 4^{3}
m)	$\sqrt[3]{ }$ (Cube Root)	Opposite of Cubic number. The number that must be multiplied three times by itself to get to the answer under the root sign. $3 \times 3 \times 3=27$ so $\sqrt[3]{27}=3$
n)	whole number	All positive numbers from 0 to $0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; \ldots$.

Question 3

Explain the following properties of equations using variables and or numbers.
a) Commutative property:
b) Distributive property:
c) Associative property:

$$
\begin{array}{ll}
3 \times 5=5 \times 3 \text { of } 2+5=5+2 & 1 \\
2(3+4)=2 \times 3+2 \times 4 & 1 \\
(2+8)+7=2+(8+7) & 1
\end{array}
$$

Question 4

4.1 Complete:
a) $10^{\circ}=$ \qquad 1 \qquad
b) $7^{1}=$ \qquad 7
c) $8 \times 0=$ \qquad 0
d) $6 \div 0=\ldots E^{-}$
e) $0 \div 9=$ \qquad
4.2 Fill in the missing word.
a) By multiplying powers with the same base, the exponents are added.
b) When powers with the same base are divided, the exponents are subtracted.
c) Name the order in which operations should be performed.

Bracket, Of, Division, Multiplication, Addition and Subtraction
d) The additive identity is \qquad 0 \qquad .
e) The multiplicative identity is \qquad 1 \qquad .
4.3 Label the following:
a) Power \qquad

$$
\begin{equation*}
4 \mathrm{~B}^{2} \tag{3}
\end{equation*}
$$

b) Exponent \qquad
c) Base \qquad

Question 5

Complete:
a. An Acute Angle is an angle smaller than 90°
b. An Obtuse Angle is an angle greater than 90° but smaller than 180°.
c. \quad A Revolution is 360°
d. \quad A Straight Angle $=180^{\circ}$
e. A Reflex is greater than 180° but smaller than 360°
f. A triangle whose two legs are equal is called an isosceles triangle.
g. A triangle of which all sides are unequal is called a scalene triangle.
h. A triangle with all sides equal is called an equilateral triangle.
i. A triangle that has a 90° angle is called a right-angled triangle.
j. A triangle that has an angle of 100° is called an obtuse triangle.
k. Explain the difference between a ray and line segment. Line segment has a definite beginning and end point. Ray has a definite starting point, but not an end point
I. The sum of the three angles of a triangle $=180^{\circ}$
$\mathrm{m} . \quad$ The sum of the 4 angles of a quadrilateral $=360^{\circ}$.
n . ' n Trapezium is a quadrilateral with only 1 pair of opposite sides parallel.

Question 6

Name the different parts of the circle:

Question 7

a. \quad Complete the Distance, Speed Time Triangle .

b. \quad Give the formula from the triangle to work out speed. $\quad S=\frac{D}{T}$

$$
\text { Total = } 75
$$

MEMORANDUM 2

Factors, Prime Numbers, GCD and GCF

1. List the factors for the following numbers:
a) $\quad F_{24}=\{1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24\}$
b) $\quad F_{36}=\{1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 36\}$
c) $\quad F_{54}=\{1 ; 2 ; 3 ; 6 ; 9 ; 18 ; 27 ; 54\}$
d) $\quad F_{16}=\{1 ; 2 ; 4 ; 8 ; 16\}$
2. a) Provide the first 10 prime numbers. $2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; 23 ; 29$
b) Provide the prime numbers between 50 and $100.53 ; 59 ; 61 ; 67 ; 71 ; 73 ; 79 ; 83$;

89; 97
c) \quad Name the smallest positive prime number. 2
3. 1 Write the following numbers as the product of their prime factors:
a)

2	42
3	21
7	7
	1

$$
2 \times 3 \times 7=42
$$

b) 108 \qquad $2 \times 2 \times 3 \times 3 \times 3=108$

2	108
2	54
3	27
3	9
3	3
	1

3.2 Determine the GCD and LCM of the following numbers using their prime factors:
a) 72 and 108
(5)

2	72		2	108
2	36		2	54
2	18		3	27
3	9		3	9
3	3		3	3
	1			1

LCM $=2 \times 2 \times 2 \times 3 \times 3 \times 3=216$
GCD $=2 \times 2 \times 3 \times 3=36$
b) 132 and 180 \qquad

2	132		2	180
2	66		2	90
3	33		3	45
11	11		3	15
	1		5	5
				1

LCM = 2X2X3X3X5X11 = 1980
$G C M=2 X 2 X 3=12$
c) 36 and 42 . \qquad

2	36		2	42
2	18		3	21
3	9		7	7
3	3			1
	1			

LCM $=2 \times 2 \times 3 \times 3 \times 7=252$
$\mathrm{GCM}=2 \mathrm{X} 3=6$
d) $\quad 160$ and 192.

2	160		2	192
2	80		2	96
2	40		2	48
2	20		2	24
2	10		2	12
5	5		2	6
	1		3	3
				1

LCM $=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5=960$
$G C M=2 \times 2 \times 2 \times 2 \times 2=32$
4. If two of the factors of a number are 12 and 5 and the product is 360 which is the third factor? \qquad
$360 \div(12 \times 5)=360 \div 60=6$ The other factor is 6
5. Write $2+2+2+2+3+3+3+3+3+3$ in the simplest form without working out the sum. $2 \times 4+3 \times 6$
6. Provide the multiples of the following numbers as requested.
a) First 4 multiples of 14 :_ $\quad \mathrm{M}_{14}=\{14 ; 28 ; 42 ; 56 ; \ldots\}$
b) Multiples of 7 between 40 and $80: M_{7}=\{\ldots ; 42 ; 49 ; 56 ; 63 ; 70 ; 77 \ldots\}$
c) Multiples of 12 smaller than $50: \quad \mathrm{M}_{12}=\{12 ; 24 ; 36 ; 48\}$

$$
\text { Total }=45
$$

Exponents, Powers, and Roots

1. a) Write $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3$ in exponential form. $2^{7} \times 3^{5}$
b) Write $4^{3}+3^{4}$ in expanded form. $4 \times 4 \times 4 \times 3 \times 3 \times 3 \times 3$
2. Label the following.

a) Exponent
b) Power
c) Base
3. Explain what a square number is. When a number is multiplied by itself, the answer is a square number. (2)
4. Calculate the following:
a) $10^{2}+1^{2}-8^{2}=100+1-64=101-64=37$
b) $4^{2} \div 2^{2}=\div \quad 16 \div 4=4$
c) $\sqrt{100}-\sqrt{36}=10-6=4$
d) $\sqrt{100-64}=\sqrt{36}=6$
e) $(\sqrt{25})^{2}=25$
f) $(\sqrt[3]{7}) 3=7$

5 Explain the following exponent laws.
a. $\quad 2^{3} \times 2^{2}=2^{3+2}$

When powers with the same base are multiplied, the exponents are only added together
b. $\quad \frac{4^{3}}{4^{2}}=4^{3-2}$

When powers with the same base are divided, the exponents are subtracted.
6. Determine the answer of the following numbers using their prime factors.
a) $\sqrt{1024}=\square$

2	1024
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

b) $\sqrt{1296}=$

2	1296
2	648
2	324
2	162
3	81
3	27
3	9
3	3
	1
$\sqrt[3]{2744}=$	

$$
\begin{aligned}
& \sqrt{1296}= \\
& \sqrt{2^{4} \times 3^{4}}=\sqrt{2^{2} \times 2^{2} \times 3^{2} \times 3^{2}}=2^{2} \times 3^{2}=36
\end{aligned}
$$

\qquad (2)

2	2744
2	1372
2	686

7	343
7	49
7	7
	1

$$
\sqrt[3]{2^{3} \times 7^{3}}=\sqrt[3]{2 \times 2 \times 2 \times 7 \times 7 \times 7}=2 \times 7=14
$$

d) $\sqrt[3]{5832}=$

2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	\times3^{2}\times3^{2}}$=2 \times 3^{2}=18$

7. How many integers are there between $\sqrt{ } 8$ and $\sqrt{ } 80$?
$\sqrt{8}<3 \quad \sqrt{80<9}$ thus $3,4,5,6,7$ en 8 (6 integers)
8. Between which 2 integers will the following lie:
a) $\sqrt{12}$ Between 3 and 4
b) $\sqrt{43}$ Between 6 and 7
9. Write the following answers in exponential form.
a) $\quad 4 \times 4^{1} \times 4^{3}$
(1) b) $3^{4} \times 3^{4} \times 3^{4}$
4^{5} \qquad
_ 3 3^{12} \qquad
c) $\quad 6^{3} \div 6^{2}$
(1) d) $10^{2} \div 10$
\qquad 6^{1} \qquad
e) $\quad 2^{5} \div 2^{3}$
(1) f) $9^{4} \times 9^{2} \times 9^{1}$
c) $6^{3} \div 6^{2}$
\qquad 10^{1} \qquad
\qquad
g) 4×4
\qquad 4^{2} \qquad
(1) h) $5^{4} \times 5^{2}$
\qquad 5^{6} \qquad
i) $0 \times 0 \times 0 \times 0$
(1) j) $6^{2} \div 6^{2}$
\qquad 6^{0} \qquad
k) 5^{0}

0 \qquad
(1) I) $12^{7} \div 12^{5} \times 12^{4}$ 12^{6} \qquad
\qquad
1 \qquad
\qquad
10. Calculate the following.
a) $\sqrt{90-9} \div 9$
(1) b) $\sqrt[3]{5^{3}}+\sqrt[3]{1^{3}}$
$9 \div 9=1$

$$
5+1=6
$$

c) $\sqrt[3]{64} \times \sqrt[3]{27}$
(1) d) $\sqrt[3]{250-34}-214$
$4 \times 3=12$
$6-214=-208$
(1)

MEMORANDUM 4

 Total $=$ 30
Integers (Positive and Negative)

1. In each case, provide the rule for the following operations with negative and positive integers.
a) When 2 negative numbers are added together: add up and keep the negative sign
b) When different signs (positive and negative) are added together.:
subtract and give the sign of the larger number
c) Subtraction of different signs (negative minus positive):

Change to an addition sum and change the subtractor to its opposite sign, Negative becomes positive and positive becomes negative.
d) negative x / \div negative $=$ positive
e) negative x / \div positive $=$ negative
2. Answered by applying order of operation.
a) $3 \times(-5)+2 \times 7=-15+14=-1$
b) $3+5 \times(-2)+7=$
$3+-10+7=0$
c) $3 \times(-5+2)-(-7)=$
$3 x-3+7=-9+7=-2$
d) $3 \times 3-(-2) \times(-2) \times(-2)=$
$9-(-8)=9+8=17$
e) $-7+(-3) \times(-2)=\quad-7+6=-1$
f) $14-(-12)=$
$14+12=26$
g) $3-7+5=$
$-4+5=1$
h) $3-(-7)+(-5)=$
$3+7+(-5)=10+(-5)=5$
i) $64 \div(-8)=$
-8
j) $10+(-28) \div(-4)$
$10+7=17$
k) $-10-14=$
$-10+-14=-24$
I) $16+(-4) \times 4=$
$16+(-16)=0$
m) $12 \times 0+(-5)=$
-5
n) $-5+(-7)+3=$
$-12+3=-9$
о) $(4+(-6)) \times 3=$
$-2 \times 3=-6$
p) $\quad-3 \times(-3) \times(-3)=$ -27
q) $3 \times(-3) \times(-3)=$

27
r) $7+12+5=$

24
s) $-5+(-8)-(-3)=\quad-13+3=-10$
t) $28 \div(-2) \times(2)=$
-28

3. Calculate

a) $\sqrt[3]{-27}$ \qquad -3
(1) b) $\sqrt[2]{16}+-2^{3}=-4$
c) $\quad-5^{2} \times-10^{3}=_25 \times-1000=-25000$ \qquad (2)

$$
\text { Total = } 30
$$

MEMORANDUM 5

Total $=$
65

Fractions

1. Match the correct answer from Column B with the word in Column A. Write only your choice from Column B with the question number of Column A.
(6)

Column A	Answer	
1.1 Improper Fraction	E	A $4 \frac{5}{6}$
1.2 Proper Fraction	D	B $\frac{7}{7}$
1.3 Mixed Number	A	C $\frac{7}{9}$
1.4 Denominator	C	D $\frac{7}{12}$
1.5 Numerator	F	E $\frac{18}{11}$
1.6 Whole Number	B	F $\frac{7}{2}$

2. Simplify $\frac{18}{24}=\frac{3}{4}$
3. Write $4 \frac{5}{9}$ as an Improper Fraction. $\frac{41}{9}$
4. $\frac{2}{3}$ of $33=22$
5. Calculate

1. $7 \frac{13}{20}-4 \frac{2}{5}=$	$3 \frac{3}{5}-1 \frac{2}{9}=$	
$=7 \frac{13}{20}-4 \frac{8}{20}$		
$=3 \frac{5}{20}=3 \frac{1}{4}$	$=3 \frac{27}{45}-1 \frac{10}{45}$	
		$=2 \frac{17}{45}$

2. $\begin{aligned} & 3 \frac{3}{4}+1 \frac{2}{5}= \\ & =4 \frac{15}{20}+\frac{8}{20} \\ & =4 \frac{23}{20}=5 \frac{3}{20} \end{aligned}$	$\begin{aligned} & \text { 7. } 3 \frac{2}{3}+1 \frac{3}{9}= \\ & =3 \frac{2}{3}+1 \frac{1}{3}= \\ & =5 \end{aligned}$	(3)
3. $\begin{aligned} & 3 \frac{3}{5} \times 4 \frac{1}{6}= \\ & =\frac{18}{5} \times \frac{25}{6} \\ & =\frac{3}{1} \times \frac{5}{1}=15 \end{aligned}$	8. $\begin{aligned} & \frac{12}{21} \times \frac{35}{48}= \\ & \frac{1}{3} \times \frac{5}{4}=\frac{5}{12}\end{aligned}$	(3)
4. $\begin{aligned} & \frac{3}{4} \div \frac{3}{12}= \\ & =\frac{3}{4} \times \frac{12}{3}=3 \end{aligned}$	$\text { 9. } \begin{aligned} & 1 \frac{2}{16} \div 2 \frac{3}{12}= \\ & =\frac{18}{16} \times \frac{12}{27} \\ & =\frac{2}{4} \times \frac{3}{3}=\frac{1}{2} \end{aligned}$	(3)
5. $\begin{aligned} & \left(\frac{1}{4}+\frac{2}{3}\right) \div\left(\frac{3}{4}-\frac{1}{2}\right)= \\ & =\left(\frac{3}{12}+\frac{8}{12}\right) \div \frac{1}{4} \\ & =\frac{11}{12} \times \frac{4}{1}=\frac{11}{3}=3 \frac{2}{3} \end{aligned}$	$\text { 10. } \begin{aligned} & \left(\frac{2}{3}+\frac{3}{4}\right) \operatorname{van} 1 \frac{1}{17}= \\ = & \left(\frac{8}{12}+\frac{9}{12}\right) \times \frac{18}{17} \\ = & \frac{17}{12} \times \frac{18}{17}=\frac{3}{2}=1 \frac{1}{2} \end{aligned}$	(3)

11. $\left.2 \frac{3}{4}-2 \frac{2}{3}\right) \times\left(1 \frac{1}{4}+1 \frac{1}{4}\right)=$	
$=\left(2 \frac{9}{12}-2 \frac{8}{12}\right) \times\left(2 \frac{2}{4}\right)$	
$=\frac{1}{12} \times \frac{10}{4}=\frac{5}{24}$	$=\frac{3}{4} \times \frac{8}{9}=-$

6.. Nicola spends $\frac{1}{2}$ hour on her English homework, $\frac{2}{3}$ hours on Math homework and 1 $\frac{1}{6}$ hours on an Afrikaans essay.
a) How many minutes does she spend on Mathematics?
$\frac{2}{3}$ of $60=60 \div 3=40$ minutes
b) How long does it take her to write her essay? 70 minutes
c) How long does she do homework altogether? $40+30+70=140 \mathrm{~min}=2$-hour 20 min (3)
7. How much is $3 \frac{4}{5}$ greater than the product of $\frac{3}{5} \times 1 \frac{3}{4}$. Show ALL your operations (5)
$3 \frac{4}{5}-\left(\frac{3}{5} \times \frac{7}{4}\right)=3 \frac{16}{20}-1 \frac{1}{20}=2 \frac{15}{20}=2 \frac{3}{4}$
8. Henry goes to town and spends $\frac{5}{8}$ of his money on a new pair of 20% off sneakers. The original price of the sneakers was R675.
a) Calculate the sale price. $\frac{8}{10} \times 675=\frac{4}{5} \times \frac{675}{1}=\frac{4}{1} \times \frac{135}{1}=R 540$
b) How much money did Henry have before he bought the sneakers?
$\frac{5}{8}=R 540$ thus $\frac{1}{8}=108$ thus $\frac{8}{8}=108 \times 8=R 864$
c) How much money does he have left? R864-540 = R324 left over

> (1)

Decimals and Percentages

1 Write the numbers in extended notation.
a $\quad 56,493=50+6+\frac{4}{10}+\frac{9}{100}+\frac{3}{1000}$
b $\quad 7,124=7+\frac{1}{10}+\frac{2}{100}+\frac{4}{1000}$
c $0,684=\frac{6}{10}+\frac{8}{100}+\frac{4}{1000}$
d $\quad \mathbf{2 4 , 8 3}=20+4+\frac{8}{10}+\frac{3}{100}$
e $9,16=9+\frac{1}{10}+\frac{6}{100}$
2. Study the following numbers and then answer the questions.
$0 ;$
0,$75 ;$
3; $\frac{1}{3}$; 37%;
0,$173 ; \frac{4}{5} ;$
20\%; 5
2.1.1 Arrange the numbers above in ascending order.
(each wrong Answer will be marked negative $1 / 2$)
0,$173 ; 20 \% ; \frac{1}{3} ; 37 \% ; 0,75 ; \frac{4}{5} ; 0 ; 3 ; 5$
2.1.2 Write down all the integers. $0 ; 3 ; 5$
2.1.3 Convert $\frac{\mathbf{1}}{\mathbf{3}}$ to a decimal. 0,33
2.1.4 Write 20% as a Proper Fraction. Simplify your answer. $\frac{1}{5}$
2.1.5 Write 0.75 as a Proper Fraction. (Simplify your Answer). $\frac{3}{4}$
2.2 Calculate and Simplify the following. Show how you go about it.
2.2.1 a) $18-3 \times 5 \div 5=18-15 \div 5=18-3=15$
b) $35 \div 5+(18-6)=$
$=7+12$
$=19$
2.2.2 a) $\frac{3}{5}+30 \%-0,16=$
$=0,6+0,3-0,16$
$=0,9-0,16$
$=0,74$
b) Write your Answer in 2.2.2a as a percentage. 74\%
c) Write your Answer in 2.2.2a as a Proper Fraction. $\frac{74}{100}=\frac{37}{50}$ (1)
2.3 Write only the answer in decimal form.
a) $23,45 \div 100=0,2345$
b) $3,507 \times 1000=3507$
c) $\frac{1}{3} \times \frac{1}{3}=0,111$
d) $\frac{1}{3}+\frac{1}{3}=\approx 0,67$
e) $\quad \frac{3}{10}+0,5=0,8$
2.4 Round the following numbers according to the table.
(6)

Number	To the closest whole number	To the closest tenth	To the closest hundredth
1,475	1	1,5	1,48
19,642	20	19,6	19,64

3. Calculate. Provide your answer in decimal form.
a. $0,375+\frac{5}{5}+1,5=0,375+1+1,5=2,875$
b. $\quad \frac{4}{5}+0,16+0,75=0,8+0,16+0,75=1,71$
c. $0,125+\frac{1}{8}+\frac{4}{5}=0,125+0,125+0,8=1,05$
4. Do the following calculations. Show all your work and simplify your Answer whenever possible. All answers must be in decimal form
4.1

$345,05 \div 0,05=\mathrm{X}$	4.2	$0,25 \times 1 \frac{3}{5}=x$
$=34505 \div 5$	$=\frac{1}{4} \times \frac{8}{5}$	
$=6901$	$=\frac{2}{5}$	
	$=0,4$	
	(2)	

4.3 | $1,543+\frac{2}{3}=b$ | 4.4 |
| :--- | :--- |
| $1,543+0,67=2,213$ | $=\frac{9}{4} \times \frac{1}{4} \times \frac{4}{8}=a$ |
| | $=\frac{9}{8}$ |
| (2) | $=1,125$ |

4.5

$2,4 \times 0,12=a$	4.6
2,4	$54,72 \div 8=6,472 \div 0,8=a$
$\times 1,2$	
$48+240=0,288$	(3)

5. Determine the percentage increase or decrease in the following cases.
5.180 to $108=$ \qquad $5.2 \quad 250$ to $100=$

$$
\begin{array}{ll}
\frac{108}{80} \times \frac{100}{1}=\frac{54}{4} \times \frac{10}{1}=\frac{27}{1} \times \frac{5}{1}=\frac{135}{1} & \frac{100}{250} \times \frac{100}{1}=\frac{4}{1} \times \frac{10}{1}=40 \%= \tag{4}\\
135-100=35 \% \text { increase } & 100-40 \text { is a } 60 \% \text { decrease }
\end{array}
$$

6. The sunglasses store has a 25% sale on sunglasses. Calculate the following.
a) If sunglasses cost R200, what is the new selling price??
$\frac{3}{4} \times \frac{200}{1}=$ R150 new price
b) How much Rand discount was given?
(2)

R 50
7. A 17 m garden hose must be cut into 4 equal parts. Calculate the length of each piece. $17 \div 4=4,25 \mathrm{~m}$

MEMORANDUM 7

Total $=$
50

Ratio and Rate

1 Write the ratios of red to blue beads as fractions:
a) $2: 5$
(2) b) $3: 4$

Red:

Blue: \qquad
c) $3: 8$

Red: \qquad
(2) d$) \quad 5: 7$

Red:

Blue: \qquad

2 Calculate the \% Boys and \% Girls in each of the following ratios.
a) $2: 4$
(2) b) $3: 7$
(2)

Boys: \qquad 33\% \qquad Boys: \qquad 30\% \qquad
Girls: \qquad Girls: \qquad 70\% \qquad
c) $4: 5$
(2)
d) $1: 3$
(2)

Boys: \qquad Boys: \qquad 25\% \qquad

Girls: \qquad 55,6\% \qquad Girls: \qquad 75\% \qquad
3. Rewrite the relationships in the simplest form:
a) $14 l: 42 l=1: 3 l$
(1)
b) 15 ml : $25 \mathrm{ml}=3: 5 \mathrm{ml}$
c) $\quad 150 \mathrm{~cm}: 3 \mathrm{~m}=1: 2 \mathrm{~cm}$
(1)
d) $\frac{2}{5}: 4=\frac{2}{5}: \frac{20}{5}=1: 10$
4. Mrs. Barnard gathered the following information about the learners in her class:

	Right-Handed	Left-Handed
Girls	12	3
Boys	16	4

a) Write down the ratio of right-handed Boys to right-handed girls.
$16: 12=4: 3$
b) Write down the ratio of left-handed Boys to left-handed girls. (1)

4:3
c) Write down the ratio of right-handed Boys to left-handed Boys.
$16: 4=4: 1$
d) Write down the ratio of right-handed girls to left-handed girls. (1) $12: 4=3: 1$
e) Write down the ratio of left-handed learners to right-handed learners. $7: 28=1: 4$
5. a) Increase R330 by the ratio $2: 3=330 \div 2 \times 3=495$
b) Decrease R90 by the ratio 3:2 $3: 2=90 \div 3 \times 2=60$
6. Calculate:
a) Cost of 1 kg of apples if 5 kg costs R52. $52 \div 5=\mathrm{R} \mathrm{10,40}$
b) $250 \mathrm{~km} / 21 / 2$ hour $=$ \qquad km / hour
$=250 \mathrm{~km}$ in 150 min
$=25 \mathrm{~km}$ in 15 min
$=100 \mathrm{~km}$ in $60 \mathrm{~min} \quad 100 \mathrm{~km} / \mathrm{h}$
c) My heart beats 56 beats per minute $=$ \qquad beats / hour (2)
$56 \times 60=560 \times 6=3360$ beats $/$ hour
7. Last year a pancake was sold at the cake sale at R3 for a pancake. Increase the price for this year in the 6: 7 ratios.
$300 \div 6 \times 7=50 \times 7=350=R 3,50$
8. Divide R 112 in the ratio 5: 9. $112 \div 14=8$

$$
\begin{equation*}
5 \times 8=\mathrm{R} 40: 9 \times 8=\mathrm{R} 72 \tag{2}
\end{equation*}
$$

9. A concrete mix is loaded at a building site. The specifications for the foundations are 1part cement, $21 / 2$ parts river sand and 4 parts stone. If $6 \mathrm{~m}^{3}$ of the dry mixture is discharged, what are the volumes of the cement, sand and stone in the mixture respectively?
(3)
$1+2,5+4=7,5$ parts
$6 \div 7,5=60 \div 75=0,8$
$0,8 \times 1: 0,8 \times 2,5: 0,8 \times 4$
0,8 m^{3} cement : $2 \mathrm{~m}^{3}$ river sand : $3,2 \mathrm{~m}^{3}$ stone
10. Calculate the rate in $\mathrm{m}^{3} / \mathrm{sec}$, if the pipe that fills a pool delivers $12 \mathrm{~m}^{3}$ of water in
$10 \mathrm{~min} . \quad 12: 600=12000000: 600=120000: 6=20000 \mathrm{~cm}: 1$
$=20000 \mathrm{~cm}^{3}$ in 1 sec
$=0,02 \mathrm{~m}^{3} / \mathrm{sec}$

11. Calculate the distance traveled if a car was traveling at an average speed of 120 km / hour after 7 hours 15 min .

In 7 hour $=120 \times 7=840 \mathrm{~km}$
In $15 \mathrm{~min} 120 \div 4=30 \mathrm{~km}$
870 km in 7-hour 15 min

MEMORANDUM 8

Functions and relationships

1 Use the given formulas and then calculate the perimeter and or area of the different shapes.

Shape	Perimeter	Surface Area
Square	4 S	$\mathbf{S}^{2}=\mathbf{a}^{2}$
Rectangle	$\mathbf{2 I}+\mathbf{2 b}$	$\mathbf{I} \times \mathbf{b}=\mathbf{a}^{2}$
Triangle	Sum of 3 sides	$1 / 2 \mathbf{b} \times \mathbf{h} \neq \mathbf{a}^{2}$
Circle	$2 \pi r$ $\pi=3,14$	$\pi r^{2}=\mathbf{a}^{2}$ $\pi=3,14$

a)

Perimeter: $7 \times 2+3 \times 2=20 \mathrm{~cm}$
Surface Area: $\quad 7 \times 3=21 \mathrm{~cm}^{2}$
Perimeter: $2 \times 3,14 \times 3=37,68 \mathrm{~cm}$
Surface Area: $3,14 \times 3^{2}=3,14 \times 9=28,26 \mathrm{~cm}^{2}$
Perimeter: $\quad 5 \times 4=20 \mathrm{~cm}$
Surface Area: $5 \times 5=25 \mathrm{~cm}^{2}$
Perimeter: $\quad 17,61 \mathrm{~cm}$

$$
\begin{equation*}
\text { Surface Area: } \quad \frac{1}{2} \times 7 \times 3=10,5 \mathrm{~cm}^{2} \tag{2}
\end{equation*}
$$

2 The linear equation is given as $y=5 x+40$.
a) Calculate y if $x=6 . y=5 \times 6+40=70$
b) Calculate x if $y=105$.
$105=5 x+40$
$5 x=105-40$
$x=\frac{65}{5}=13$
c) Calculate x if $y=85$.
$85=5 x+40$
$5 x=85-40$
$x=\frac{45}{5}=9$
3. The following values are given:
$a=5 ; \quad b=-3$ and $\quad c=9$.
Calculate the values of the expressions:
a) $a+\frac{1}{2}(c)-b$
(3) $\mathrm{b} \quad 4 c(a-b)$
$=5+\frac{1}{2}(9)-(-3)$
$=5+4,5+3$
$=4 \times 9(5-(-3)$
$=36(8)$
$=12,5$
$=288$
c) $\frac{-4 a c}{2 b}$
$=\frac{-4 \times 5 \times 9}{2(-3)}$
$=\frac{-180}{-6}$
$=30$
(3)

MEMORANDUM 9 Total $=$ 45
 Patterns

1. Explain:
a) What is meant when it is said that a pattern has a constant difference? The same Number is added to or subtracted from a term each time to find the next term.
b) What is meant when a pattern is said to have a constant ratio? Each time the same Number is multiplied or divided to find the next term.
(2)
2. Calculate the following two terms in each number pattern.
a) $6 ; 14 ; 22 ; 30 ; 38 ; 46 ; \ldots$
b) $1 ; 2 ; 4 ; 8 ; 16 ; 32 ; 64 ; \ldots$
c) $1 ; 2 ; 4 ; 8 ; 14 ; 22 ; .$.
d) $1 ; 3 ; 9 ; 27 ; 81 ; 243$
3. Use the rule to find the first four terms in each number pattern.
a) Start at 3 and add 2 each time.

3; 5; 7; 9;...
b) Start at 1 and double every time.

1; 2; 4; 8;
c) Start at 1000 and multiply by $1 / 2$ each time.

1000; 500; 250; 125; ...
4. Study the following sequences. describe the rule of each in your own words and then use the rule to determine the 10th term of that row.
a) $4 ; 8 ; 12 ; 16 ; \ldots$

Rule: Start at 4 and add 4 each time / Multiply place in the row by 4
10th term 40
b) $1 ; 4 ; 9 ; 16 ; \ldots$

Rule: Start at 1 and multiply place in the row by himself / squared place in the row 10th term: 100
c) $5 ; 8 ; 11 ; 14$

Rule: Start at 5 and add 3 each time
10 th term $=32$
5. a) Use the rule $\mathbf{m}=\mathbf{2 n}+\mathbf{3}$ to complete the following table.

\mathbf{n}	5	6	a)	12	b)	18
\mathbf{M}	c) 13	d) 15		27	39	

b) Calculate the value of m if $n=201 m=405$
6. Study the following pattern and then answer the questions.

Input (a)	1	2	3	4	$\mathbf{1 2}$	$\mathbf{2 0}$	\boldsymbol{Z}
output (b)	5	9	13	17	x	\boldsymbol{y}	$\mathbf{1 2 1}$

a) Describe the pattern in words.

Start at 5 and add 4 each time
b) Write the rule of the pattern as an expression. $4 n+1$
c) Find the values of:
i. $\quad x=4 \times 12+1=49$
ii. $\quad y=20 \times 12+1=241$
iii. $\quad z=(121-1) \div 4=30$
7. Study this dots design
a) Draw the fourth design.
b) Write down the rule you used to expand the

1) Black dots Squares the place in the row / n^{2}
2) Light/Red Dots: Start at 3 and add $2 / 2 n+1$ each time
c) Complete the given table to compare the number of dark spots with the light spots. (12 x½)

Pattern	1	2	3	4	5	10
Light/Red Dots	3	5	7	9	11	21
Black dots	1	4	9	16	25	100

- MEMORANDUM 10
 Algebraic Expressions and Equations

 Total $=$1. Study the expression and answer the questions.

$2 \mathrm{a}+7$

a) a is the variable.
b) 2 is the coefficient.
c) 7 is the constant.
2. Write the following expressions in words.
a) $\quad 2(a+b) \quad$ Add 2 variables and multiply by 2 .
b) $\quad 6 y-1 \quad$ Multiply a variable by 6 and subtract 1 .
c) $\quad 10-(y+3)$ The difference between 10 and the sum of a variable and 3 .
3. Resolve the unknown if $a=3, b=5$ and $c=-4$:
a) $a+b \times c$
(2) b) $a-3 b$
$=3+5 x-4$
$=3+-20$
$=-17$

$$
\begin{align*}
& =-4-3 \times 5 \tag{2}\\
& =-4-15 \\
& =-19
\end{align*}
$$

c) $\quad c^{2}-a c+12$
(2) d) $3 a+3 b-2 c$
$=3 \times 3+3 \times 5-2(-4)$
$=9+15+8$
$=32$
$=40$
4. Solve for x :
a) $x+9=14$
$x=14-9=5$
(2) b) $48=39-x$

$$
\begin{equation*}
48-39=-x \tag{2}
\end{equation*}
$$

$$
x=-9
$$

c) $\mathbf{1 3 5}=5 x+10$
(2) d) $\frac{4 x}{9}=8$
$5 x=135-10$
$x=\frac{125}{5}=25$

$$
\begin{align*}
& 4 x=8 \times 9 \tag{2}\\
& x=\frac{72}{4}=18 \tag{2}
\end{align*}
$$

e) $\frac{y}{4}+12=17$
$y=4(17-12)$
$y=20$
(3)
f) $x^{2}-23=-7$
$x^{2}=-7+23$
$x=\sqrt{16}=4$
5. Resolve the unknown if $c=4 ; d=-5$ and $e=2$:
a) $\quad-d+\left(e^{2} \times d\right)$
$=-(-5)+4(-5)$
$=5+-20$
$=-15$
(2)
b) $\quad c-5 c+e \times d$ $=4-5(4)+2(-5)$

$$
=4-20+-10
$$

$$
\begin{equation*}
=-26 \tag{2}
\end{equation*}
$$

c) $\quad 4 e^{2} \times e+c d-e$

$$
\begin{align*}
& =4(8)+4(-5)-2 \tag{3}\\
& =32+(-20)-2
\end{align*}
$$

d) $2 d+\frac{c}{e}$
$=2(-5)+\frac{4}{2}$
$=-10+2$

$$
\begin{equation*}
=10 \quad=-8 \tag{5}
\end{equation*}
$$

6. Write the following as expressions.
a) A number is reduced by 4 to power 2. $x-4^{2}$
b) 12 is divided by an unknown number and added to $14.14+\frac{12}{x}$
c) Twelve less than a Number. $x-12$
d) $\quad 9$ is added to the Square of a variable. $9+x^{2}$
e) 7 less than the sum of 2 unknown numbers. $(a+b)-7$
7. Determine the value of the following expressions:
a) $4 m n o-2 m n+o$, as $m=5, n=8$ en $o=2$.

$$
\begin{align*}
& =4 \times 5 \times 8 \times 2-2 \times 5 \times 8+2 \\
& =320-80+2 \\
& =240+2=242 \tag{4}
\end{align*}
$$

b) $\quad 3(a-c)-4(2 a+b-4 c)$, as $a=2, b=7$ en $c=3$.
(4)

$$
\begin{aligned}
& =3(-1)-4(4+7-12) \\
& =-3-4(-1) \\
& =-3+4 \\
& =1
\end{aligned}
$$

MEMORANDUM 11

Total $=$
35

Graphs

Line graphs consist of an X and Y axis

1. The y-axis is the Vertical line.
2. The x-axis is the Horizontal line.
3. The variable shown on the y-axis is known as the dependent variable.
4. The variable shown on the x-axis is known as the independent variable.
5. Linear graphs are a) straight line graphs where the relationship between the dependent and independent variable is a b) constant / different increase or decrease.
6.

Linear Graph that a)
Increases in value

Linear Graph that b)
Decreases in value
7. A constant value graph is indicated by an a) straight line running b) horizontally to the x-axis.
(2)
8. Water drips into three containers, A, B and C, at a constant rate. The containers are shown below. Draw a graph to show how the water level in the containers will differ over time.
(6)

Speed (S):	60	60
Time (T):	2	3
Distance (D):	120	180

9. The distance (km) traveled by a car is calculated by the following formula:

Distance $(\mathrm{D})=$ Speed $(\mathrm{S}) \times$ Time (T)
Time is measured in hours..
(a) Present the information on a graph.

(b) Is the car's speed constant? Motivate your answer.

Yes, moving at a constant speed of $60 \mathrm{~km} / \mathrm{h}$ Straight line graph
which unit is the speed measured? km/h
(1)
(d) Use your graph and answer the following questions.

Indicate on the graph where you made the readings.
(i) What distance will be covered after 6 hours? 360 km
(ii) How long will it take the car to cover 330 km ? 5 h 30 min
(1)
10. After a difficult training session, Petru ran herself a nice full bath. While the water was running in, she brushed her teeth so she could get in bed straight after.

This graph shows how the level of water in the bath changes.
Take a close look at the graph and describe what you think happened using the different Alphabet letters.

Beginning until A Water running in
A-B \quad Water had already run in, but she had not yet entered
B-C \quad She climbs in and the water level rises
C-D \quad She lies and relaxes in the bath
D-E \quad Get out and let the water run out

11. a) Draw a graph to illustrate the following events:

During a rainstorm, Riëtte put a measuring cup outside to measure how much it was raining. After 10 minutes of heavy rain, there was $200 \mathrm{~m} \ell$ in the cup. It started to rain softer, and after another 20 minutes there was $250 \mathrm{~m} \ell$ in the cup. When Riëtte went to look 20 minutes later there was 280 ml in the measuring cup. 30 minutes later she went to look again, but there was no change. (5)

b) Is it a linear or a non-linear graph? Non-linear
(1)

MEMORANDUM 12

Geometry

1. Complete the following by writing down the missing words:
a) An angle of 215° is called a reflex angle.
b) The sum of the interior angles of a Triangle is equal to 180°.
c) A triangle whose one angle is 90° is called a right-angled Triangle.
d) A triangle whose two sides are the same length is called an isosceles triangle.
e) A quadrilateral of which all sides are equal, but the angles are not equal is called a rhombus.
2. Measure and label the following angles:
a) 70°
b) 266°
c) 126°

3. Draw:
a) Draw line segment $A B 30 \mathrm{~mm}$ long.

b) \quad Draw $K L \| O P$.
\qquad -
\qquad
c) Use your compass and ruler and construct $\mathrm{PQ} \perp \mathrm{AB}$

4. Give the name of each angle as well as a description in degrees.

Angle	Name of Angle	Degrees
1	a) Acute Angle	b) between 0 and 90°
	e) Right Angle	d) Equal to 90°
i) Reflex Angle Angle	d) Between 90° and 180°	

5. Use your compass and ruler to draw an equilateral triangle with lengths of 7 cm .

6. What shape properties are described here?
(Square, Rectangle, Parallelogram or Kite)
a) Four angles of 90° each.

Two pairs of opposite sides are equally long and parallel.
Square, Rectangle and parallelogram
b) Two pairs of opposite angles are equal. The angles are not 90°.

Two pairs of opposite sides are equally long and parallel.

Parallelogram

7. The Triangle below is not drawn to scale. Calculate the size of angle c
$180-90-65=25^{\circ}$

8. The quadrilateral below is not drawn to scale. Calculate the magnitude of angle e.

$$
360-65-120-115=60^{\circ}
$$

Angel $\mathrm{e}=60^{\circ}$
9.
a) Name the 3-D Shape.

Rectangular prism

b) Calculate the volume of the Shape.
$7 \times 4 \times 4=112 \mathrm{~cm}^{3}$
c) Determine the outer surface area of the Shape.
(4)
$=4 \times 7 \times 4+2 \times 4^{2}$
$=112+32$
$=144 \mathrm{~cm}^{2}$
10. Study the following figure of the school yard and then answer the questions that follow.

a) Calculate the Surface Area of the school grounds. \qquad
(3)

$$
\begin{aligned}
& =18 \times 8+12 \times 20 \\
& =144+240=384 \mathrm{~m}^{2}
\end{aligned}
$$

b) Calculate the Perimeter of the school grounds. \qquad
(2)

$$
=8+18+12+20+30=88 \mathrm{~m}
$$

11. Name the following figures:

A. Cube
B. Pentagon
C. Trapezium
D. Square based pyramid
E. Triangular Prism
12. Which 3D shapes can be folded from the following template?
(2)
a)

Cube
b) pentagonal pyramid / pentagon-based pyramid
13. Complete the table on the given shapes

13.1.	Name	Total Faces	Total Corners	Total Edges
	a. rectangular prism	b. 6	$\begin{array}{ll}\text { C. } & \\ & \\ & 8\end{array}$	d. 12
13.2	a. Pentagonal pyramid	b. 6	C. 6	d. 10

14. Draw a Circle with a diameter of 5 cm and indicate the following.
a) Diameter
b) radius
c) Cord
d) Circumference
15. Calculate the Perimeter of the Circle in Question 14.
(2)
$2 \pi r=2 \times 3,14 \times 2,5=5 \times 3,14=15,7 \mathrm{~cm}$
16. Calculate the area of the Circle in Question 14.

$$
\begin{equation*}
\pi r^{2}=3,14 \times 2,5^{2}=3,14 \times 6,25=19,625 \mathrm{~cm}^{2} \tag{3}
\end{equation*}
$$

MEMORANDUM 13

Total $=\mathbf{6 0}$

Data Handling

1. The following is a presentation of Pieter's Mathematics results (\%) for the year.
67; 45; 65; 69; 56; 65; 76; 65; 70; 54; 65; 67; 70; 72; 75;
a) Organize the data using a stem and leaf graph.

stem	leaf
4	$5 ;$
5	$4 ; 6$
6	$5 ; 5 ; 5 ; 5 ; 7 ; 7 ; 9$
7	$0 ; 0 ; 2 ; 6 ; 5$

b) What is the highest\% he has achieved? 75%
c) What is the lowest \% he has achieved? 45%
d) Name and explain the median of the data? 67\% The middle value. There are just as many tests with a lower performance than with a higher performance than that of the median.
e) Name and explain the mode of the data? 65\% the results that are most prevalent (2)
f) What is the average of the data?

$$
\frac{67+45+65+69+56+65+76+65+70+54+65+67+70+72+75}{15}=65,4 \%
$$

g) Calculate and explain the scope / distribution of the data? Difference between the best and worst results $=\quad 75-45=30 \%$
2. Jasper made the following survey about the color of the children in his grade's eyes. Complete the table.

Eye Color	Frequency	Total
BLUE	HHHHH HHH III	18
GREEN	HHHHHHHHHH II	22
BROWN	HHHHH HHHHH HHH II	27
GREY	HHH HHH HH HHH III	23
	Total	

b)

What fraction of the class has brown eyes? (Simplify)
of the class have brown eyes
(2)
c) Represent the information on a bar graph,
(8)

Eye Colors of the Grade 7 Class

3. Aneske and Heleen had to do research to find out which fast food restaurants in town are most popular with the learners.

Complete the table below

Favorite restaurant with learners from Vorentoe Primary School

Restaurant	Boys			Girls		
		Fraction of Total		\circ sector on pie chart		Fraction of Total
Steers	18	$\frac{3}{20}$	$18 \times(360 \div 120)$ $=54^{\circ}$	27	$\frac{3}{10}$	sector on pie chart
McDonalds	42	$\frac{7}{20}$	$42 \times 3=126^{\circ}$	18	$\frac{2}{10}=\frac{1}{5}$	$18 \times 4=72$
Kentucky	30	$\frac{5}{20}=\frac{1}{4}$	$30 \times 3=90^{\circ}$	18	$\frac{2}{10}=\frac{1}{5}$	72
Wimpy	24	$\frac{4}{20}=\frac{1}{5}$	$24 \times 3=72^{\circ}$	18	$\frac{2}{10}=\frac{1}{5}$	72
Spur	6	$\frac{1}{20}$	$6 \times 3=18^{\circ}$	9	$\frac{1}{10}$	36
Total	120	$\frac{20}{20}$	360°	90	$\frac{10}{10}$	360°

b. Use a compass and protractor to draw a pie chart for the Boys

FAVORITE RESTAURANT OF THE GRADE 7 BOYS

- Steers
- McDonalds
- Kentucky
- Wimpy
- Spur

GOOD LUCK WITH YOUR

EXAM!

